Maryland Comprehensive Assessment Program

High School Reference Sheet

Formulas

Area (A) and Circumference (C)

Name	Shape	Formula
Rectangle	w	A = lw
Parallelogram	b h	A = bh
Triangle	h b	$A = \frac{1}{2}bh$
Trapezoid	b ₁ b ₁	$A = \frac{1}{2}(b_1 + b_2)h$
Circle	d	$A = \pi r^2$ $C = 2\pi r$ $C = \pi d$

Formulas for Right Triangles

Shape	Formula
c a	Pythagorean Theorem
	$a^2 + b^2 = c^2$
	Trigonometric Ratios
	$\sin \theta = \frac{a}{c} \cos \theta = \frac{b}{c} \tan \theta = \frac{a}{b}$

Special Right Triangles

30°-60°-90°	45°-45°-90°
$ \begin{array}{c c} 2x & 60^{\circ} \\ \hline 30^{\circ} & \\ \hline x\sqrt{3} \end{array} $	x√2 45° x x

Volume (V) and Surface Area (SA)

, , , , , , , , , , , , , , , , , , , ,		
Name	Shape	Formula
Right Rectangular Prism	h	v = lwh $SA = 2lw + 2hw + 2lh$
General Prism	h	v = Bh
	h B	SA = Sum of the areas of the faces
Right Circular Cylinder	r h	$V = \pi r^2 h$
		$SA = 2\pi r^2 + 2\pi rh$
Right Circular Cone	h	$v = \frac{1}{3}\pi r^2 h$
	(" r	$SA = \pi r^2 + \pi r l$
Right Pyramid	h	$v = \frac{1}{3}Bh$
	В	$SA = B + \frac{1}{2}Pl$
Sphere		$V = \frac{4}{3}\pi r^3$ $SA = 4\pi r^2$
		3A — 4III

Polygon Angle Formulas

Interior Angle Formulas Sum of the Interior Angles of a polygon with n sides = $180^{\circ}(n-2)$ Measure of an interior angle of an n-sided regular polygon = $\frac{180^{\circ}(n-2)}{n}$

Formulas

Equations of a Line

Standard Form:

$$Ax + By = C$$

where A and B are not both zero

Slope-Intercept Form:

$$y = mx + b$$

where m = slope and b = y-intercept

Point-Slope Form:

$$y - y_1 = m(x - x_1)$$

where m = slope and (x_1, y_1) is a point on the line

Coordinate Geometry Formulas

Let (x_1, y_1) and (x_2, y_2) be two coordinate pairs

slope =
$$\frac{y_2 - y_1}{x_2 - x_1}$$
 where $x_2 \neq x_1$

midpoint =
$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

distance =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Arithmetic Sequence	Geometric Sequence	Geometric Series
$a_n = a_1 + (n-1)d$	$a_n = a_1 r^{n-1}$	$s_n = \frac{a_1 - a_1 r^n}{1 - r}$ where $r \neq 1$
Quadratic Formula	Distance Traveled	Arc Length
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	d = rt	$S = r\theta$ (where θ is in radians)
Simple Interest	Compound Interest	Continuously Compounded Interest
I = prt	$A = P\left(1 + \frac{r}{n}\right)^{nt}$	$A = Pe^{rt}$

Conversions

Angle Measurements	Weights
1 Radian = $\frac{180}{\pi}$ Degrees	1 pound = 16 ounces 1 pound = 0.454 kilograms
1 Degree = $\frac{\pi}{180}$ Radians	1 ton = 2000 pounds 1 kilogram = 2.2 pounds
Distances	Volumes
1 mile = 5280 feet	1 cup = 8 fluid ounces
1 mile = 1760 yards	1 gallon = 4 quarts
1 mile = 1.609 kilometers	1 pint = 2 cups
	1 gallon = 3.785 liters
1 kilometer = 0.62 mile	1 quart = 2 pints
1 meter = 39.37 inches	1 liter = 0.264 gallons
1 inch = 2.54 centimeters	1 liter = 1000 cubic centimeters

