MCAP Mathematics Assessments

High School Reference Sheet

Formulas

AREA (A) AND CIRCUMFERENCE (C)

Name	Shape	Formula
Rectangle	, ,	A = lw
Parallelogram	b h	A = bh
Triangle	<u>n</u>	$A = \frac{1}{2}bh$
Trapezoid		$A = \frac{1}{2}(b_1 + b_2)h$
Circle	ď	$A = \pi r^2$ $C = 2\pi r$ $C = \pi d$

FORMULAS FOR RIGHT TRIANGLES

Shape	Formula
c a b	Pythagorean Theorem $a^2 + b^2 = c^2$
	Trigonometric Ratios
	$\sin\theta = \frac{a}{c} \cos\theta = \frac{b}{c} \tan\theta = \frac{a}{b}$

SPECIAL RIGHT TRIANGLES

VOLUME (V) AND SURFACE AREA (SA)

Name	Shape	Formula
Right Rectangular Prism	h	V = lwh $SA = 2lw + 2hw + 2lh$
General Prism	h B b b b h	V = Bh SA = Sum of the areas of the faces
Right Circular Cylinder	r h	$V = \pi r^2 h$ $SA = 2\pi r^2 + 2\pi r h$
Right Circular Cone	h	$V = \frac{1}{3}\pi r^2 h$ $SA = \pi r^2 + \pi r l$
Right Pyramid	h	$V = \frac{1}{3}Bh$ $SA = B + \frac{1}{2}Pl$
Sphere	r	$V = \frac{4}{3}\pi r^3$ $SA = 4\pi r^2$

POLYGON ANGLE FORMULAS

Interior Angle FormulasSum of the Interior Angles of a polygon with n sides $180^{\circ}(n-2)$ Measure of an interior angle of an n-sided regular polygon $\frac{180^{\circ}(n-2)}{n}$

FORMULAS

Equations of a Line	Coordinate Geometry Formulas
Standard Form:	Let (x_1, y_1) and (x_2, y_2) be two coordinate pairs.
Ax + By = C	
where A and B are not both zero	slope = $\frac{y_2 - y_1}{x_2 - x_1}$ where $x_2 \neq x_1$
Slope-Intercept Form:	(x_1+x_2, y_1+y_2)
y = mx + b	$midpoint = \left(\frac{1}{2}, \frac{1}{2}\right)$
where $m =$ slope and $b = y$ -intercept	
	distance = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
Point-Slope Form:	
$y - y_1 = m(x - x_1)$	
where $m =$ slope and (x_1, y_1) is a point on the line	

Arithmetic Sequence	Geometric Sequence	Geometric Series
$a_n = a_1 + (n-1)d$	$a_n = a_1 r^{n-1}$	$S_n = rac{a_1 - a_1 r^n}{1 - r}$ where $r eq 1$
Quadratic Formula	Distance Traveled	Arc Length
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	d = rt	S=r heta (where $ heta$ is in radians)
Simple Interest	Compound Interest	Continuously Compounded Interest
I = prt	$A = P\left(1 + \frac{t}{n}\right)^{nt}$	$A = Pe^{rt}$

Conversions

Angle Measurements	Weights	
	1 pound = 16 ounces	
1 Radian = $\frac{180}{\pi}$ Degrees	1 pound = 0.454 kilograms	
1 Degree = $\frac{\pi}{100}$ Radians	1 ton = 2000 pounds	
100	1 kilogram = 2.2 pounds	
Distances	Volumes	
1 mile = 5280 feet	1 cup = 8 fluid ounces	
1 mile = 1760 yards	1 gallon = 4 quarts	
1 mile = 1.609 kilometers	1 pint = 2 cups	
	1 gallon = 3.785 liters	
1 kilometer = 0.62 mile	1 quart = 2 pints	
1 meter = 39.37 inches	1 liter = 0.264 gallons	
1 inch = 2.54 centimeters	1 liter = 1000 cubic centimeters	